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ANALYTICAL STUDIES OF LUNI-SOLAR EFFECTS ON THE
MOTION OF ARTIFICIAL SATELLITES

By

T. L. Felsentreger and J. P. Murphy
Goddard Space Flight Center

Abstract

Theoretical and experimental studies indicate that long periodic
lunar and solar forces produce perturbations in the orbital elements
of some close earth satelliteb which are comparable to long period
geopotential zonal harmonic effects. Analytical formulations for third
body, solar radiation pressure, tidal, and precession and notation effects
have been successfully used to account for observable long period vari-
ations in the orbital elements of such satellites as Relay 1, Relay 2, and
Telstar 2. For example, in the case of Relay 1, a variation in the eccen-
tricity with an amplitude of about .0007 and a period of about 400 days was
successfully attributed to iuni-solar forces using these formulations.

Remaining variations in some orbital elements (after removal of the
luni-solar, etc. effects) provide strong evidence for adjustment of geo-
potential parameters (used in the orbit determinations) to more recent
values. For example, use of the value -2.504 x 10-6 for J3 would ac-
count for the remaining variation in the eccentricity of Relay 2 (the value
-2.285 x 10 -6 was used in the orbit determination).

Preliminary attempts to deduce seasonal .variations in the geopotential
have been promising. This study involves an analysis of the long period
variations remaining in the orbital elements of satellites after removal of
all zonal harmonic, luni-solar gravitation, solar radiation pressure, ti-
dal, and precession and mutation effects.

Discussion

Introduction

Most orbit theories for close earth satellites neglect lunar and
solar forces with respect to the effects caused by the Earth's gravity
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field. However, an examination of the parameters in the long period
parts of the disturbing functions indicates that some luni-solar forces
give rise to perturbations which are comparable to long period zonal
harmonic effects. Moreover, these perturbations are observable and
predictable in the orbital element histories of some earth satellites over
time spans covering hundreds of days.

In order to demonstrate this, analytic expressions for lunar and
solar gravitational (secular and long period), solar radiation pressure
(long period), tidal (long period), and precession and nutation (long
period) effects have been formulated (References 1, 2, and 3). These
formulations were obtained from a straightforward integration of the
variation equations for the Keplerian orbital elements (semi-major axis,
eccentricity, inclination, mean anomaly, argument of perigee, and longi-
tude of ascending :node). The elements were referred to the equator of
date and the equinox at an initial epoch; the integration was performed
by assuming only the arguments of trigonometric terms to be functions
of time. Resonances were treated as special cases.

The saallite elements used in the study were obtained from a reduc-
tion of tracking data using an orbit determination computer program
based upon the 1959 artificial satellite orbit theory of Brouwer (Refer-
ence 4). Hence, these elements are the so called "mean," or "double-
primed," elements of Brouwer. The theory involves only the geopoten-
tial zonal harmonics through J S ; the following values were used:

J Z = 1.08219 x 10-3
	

J4 = -2.123 x 10"6

J 3 = -2.285	 x 10_6
	

J5 = -2.32 x 10'7.

The study was carried out on a number of satellites. However, only
some of the more interesting results for the satellites Relay 1, Relay 2,
Telstar 2, and Nimbus 2 will be reported here. There was a particularly
interesting resonance phenomenon in the case of Relay 2 for which a
special analytic formulation was derived (Reference 5). Also, an ob-
servable long period variation in the semi-major axis of Telstar 2 was
found to be attributable to an indirect solar radiation pressure effect
caused by passage of the satellite in and out of the Earth's shadow
(Reference 6).
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Perturbations in Orbital Elements

The secular and long period perturbations in the Keplerian orbital
elements were obtained from integration of the following variation equa-
tions, which include coupling effects with zonal harmonics:

de _ v -7J DR

dt a nag a aw

1)

di	 cos i	 aR _	 1	 aR
dt —na 2 /1--­e" sin i-" aw na g 3 1 - e^ sin i an

d,t 2	 aR 1 - e 2 BR + dt Se + dt Si_
dt

_	 _
na as	 na2e 7e de	 di

do) _	 cos i aR +	 aR+ dw S e + dw S i , (2)dt na2 J1 - e'F"sin i ai nag e	 ^)e	 de	 di

dQ 1 BR d Q	 dS2
+	

Ss *	 Si .
dt nag	 1	 e 2 sin i ai de	 dT

The integrations were performed by considering the arguments of trigon-
ometric terms to be linear functions of time - hence, resonances had to
be treated as special cases. In Equations (2), S e and S i are the perturba-
tions obtained by integration of Equations (1), and t, ca, , and 0 are given
by (see 'References 1 and 4)

2	 2 a a

n 1- 3J2ae	
(1-3cos2i)+	

3J^ e 	
X10-25e2+16

4a 2 (1 - e2)3/2	 128x4 (1- e2)3/2

-6(10-15e 2 + 16 3 1 -e 2 ) cos 2 i +(130-25e 2 + 1 44 3I - e2 ) Cos 4i^

45J a 4 e 24 e	 (3 - 30 cos2i+35cos4i)
128 a 4 (i - e 2 ) 3/2
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3J a 2 	 3J 2 a 2
-n	 2 c	 (1-5cos2 i)+	 2	 A	 -10-25e2,.24ti 1-r^

4n 2 (1 - e 2 ) 2	 128a4 (1 - e2)4	 as

-6(6 - 21e 2 + 32x1-e2) COS 2  i + 5(86-9e 2 +72'1-e2 )COS 4 i j

15J4a^ [3(4 1 3e 2 ) - 18 (8 + 7e 2 ) cos 2 i + 7 ( 2 8 4 27E'2 )cos4i

128 a 4 (1 - e2)a

3J 2 a 2 cos i	 3J22ae4 eos i
Sl ^ n -	 + --	 [4-9e 2 + 12v 1 - e 2 - (40-5e2 (3)

2a 2 (1-- e 2 ) 2	 32a4(1 - e2)4

1SJ a a 4 (2+3e 2 ) cos i

	

+ 36 V ' 1 - e 2 ) cos 2 i -	 (3 - 7 COOi )
32a 4 (1 - e2)4

Also, in Equations (1) and (2), the function "R" represents, in general,
any of the secular and/or long period "disturbing" functions due to lunar
and solar forces. An equation for the semi-major axis does not appear
because only secular and long period perturbations are being considered
here. Perturbations in e , i, t, w, and 0 arise from lunar and solar
gravitation and solar radiation pressure; tidal forces and precession and
nutation cause effects in i, /t, w , and Q .

Comparison with Geopotential Zonal Harmonics Effects

One can obtain an estimate of the magnitude of the secular and long
period luni-solar perturbations relative to those due to the Earth's
zonal harmonics by a study of the parameters appearing as factors in
the disturbing functions.

It can be seen from the 1959 paper of Brouwer (Reference 4) that
the long-period part of the Hamiltonian F* appears with the small fac-
tors J 2 /as , J3 /a4 , Ja /as , and JS /a 6, and the secular parts Fi , and F 2s
have 12 /a 3, JZ /a", and J4 /a s as small factors (F z , although second
order, gives rise to first-order long-period perturbations). The secular
and long-period gravitational disturbing functions of the sun and moon
have the factors mo no2 a 2 and in n 2̂ a , respectively. The long-period
solar radiation pressure disturbing function appears with -Fa as a mul-
tiplier (for- illustration, the value of A/m for Telstar 2, which is about
0.074860427 cm 2 /gm, was chosen. for use in this analysis).

f
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Table 1 gives a listing of these parameters for increasing values of
a; here, the values of the zonal harmonic coefficients used were those
adopted by the Goddard Computing Center (see Introduction). In addition,
the radius of the Earth has been chosen as the unit of distance, time is
expressed in the Vanguard unit (806.832 sec.), and angular measure is in
radians.

Assuming that divisors of approximately the same order arise in the
integration of both the zonal harmonic and luni-solar disturbing functions,

Table 1
Parameters in the Secular and Long-Period Disturbing Functions

(Telstar 2)
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we can see that at about a 1.2 the long-period effects due to luni-
solar gravitation are about the same as those arising from is. Further,
at a ` 1.9 the luni-solar long-period effects are just as important as
those due to any one of J z2, J a , J a , or J S . Also, at a ti 3, solar radiation
pressure is as significant as the zonal harmonics of the Earth. For in-
creasing values of a, of course, the luni.-solar forces became progressively
larger while the effects due to the Earth's zonal harmonics diminish.

As far as the secular terms are concerned, the luni-solar effects
became comparable to the zonal harmonic effects at about a 5. There-
fore, the integration becomes invalid at this point, and the formulas
should not be used for satellites whose orbits have semimafor axes ex-
ceeding this value.

Analysis of Relay 1 and Telstar 2

An examination of the mean orbital elements of Relay 1 and Telstar
2 reveals quite substantial long-period variations remaining in the ec-
centricity, inclination, argument of perigee, and longitude of ascending
node. These elements are the "double-primed" variables of Brouwer

	 V,

(see Reference 4), so the effects due to the earth's zonal harmonics
though Js have been accounted for. Since the two satellites are high
enough so that air drag may be neglected, it was felt thrt these pertur-
bations might be due to Juni-solar forces. For these two satellites tidal
and precession and nutation effects were found to be negligible compared
to lunar and solar gravitational effects and solar radiation pressure.

Data for Relay 1 and Telstar 2 spanning 630 and 525 days, respec-
tively, were analyzed (Reference 1). Figures 1 to 4 give plots of the
uncorrected and corrected values of eccentricity and inclination ver.;us
time. It is clear that the major portions of the perturbations were indeed
due to luni-solar forces.

The argument of perigee and the longitude of ascending node were
handled in a somewhat different fashion because of the presence of secu-
lar effects. First, the existence of long-period variations in the double-
primed elements was detected by examining the residuals from least-
squares fits to a constant plus a secular term. Then the long-period
luni-solar perturbations were subtracted from the double-primed ele-
ments, additional least squares analyses of the same type were made,
and the residuals were again examined. The least squares results are
as follows:

6
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Figure 8. Residuals from least squares fits to longitude of ascending node for Telstar 2.
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(1) Relay 1:

w = 349.704 + (1:21264/day) (t - to)

W C = W - 660 = 349:850 + (1:21206 /day) (t - to)

Q = 37:035 - (1 0.27953/day) (t - to)

QC = Q - 80 = 36:885 - (1:27895/day) (t - to)

(2) Telstar 2:

W = 297:183 + (1:21685/day) (t - to)

w^ = w - Sw = 297.242 + (1 0.21716/day) (t - to)

= 76:503 - (1:05483/day) (t - to)

Q C = Q - 80 = 76:446 - (1:05497/day) (t - to)

Figures 5 to 8 indicate that the principal remaining variations in the argu-
ment of perigee and longitude of ascending node were caused by the sun
and the moon.

I

To illustrate the fact that long-period luni-solar effects can be as
significant as first-order long-period zonal harmonic effects, let us ex-
amine the perturbations in the eccentricity of Relay 1 and Testar 2.
Tables 2 and 3 present the amplitudes of the principal long-period terms
appearing in the formulas for the luni-solar and zonal harmonic effects,
along with the corresponding arguments e­ nd periods (the formulas for
the zonal harmonic terms were obtained from Reference 4). It is clear
that the luni-solar effects are just as impoetant as zonal harmonic
perturbations.

Analysis of Relay 2

Similar results were obtained in the case of Relay 2. However, the
situation was complicated by the existence of a near-resonant condition
caused by a longitude of perigee (w + n ) which was practically constant
for the time interval studied (about 654 days). The period of the longitude
of perigee was found to be on the order of 550 years. This condition
caused an almost secular increase in the eccentricity and, to a much lesser
extent, in the inclination.

11



r

r

Source Amplitude Argument Period (days)

(J2/J2) 373 x 10 h 296

(J /J 2)
-60 2 • 148

(12) 17 24, 148

00 21 5 4 296

(Js/M -1 3w 99

Lunar gravity -220 2 (' 1, - w - : 1121

Lunar gravity 192 ` 1c - 2w - i1 261

Lunar gravity -95 2- 148

Lunar gravity 33 2 (N, -w- - S1) 14

Lunar gravity 11 2).0 - Sty - 2« - 0 14

Lunar gravity -11 Oc t 2a - ;1 103

Solar gravity 245 2 (n„ - w - i1) 219

Solar gravity 221 2,, - 110 - 2w - :: 607

Solar gravity -106 2 (a, - w - :1) 1111

Solar gravity 90 - 2w - 0 261

Solar gravity -42 2e- 148

Solar gravity -35 2 (X,v - 00 - u) 781

Solar gravity 8 xU - "o - 2w - Q 917

Solar gravity -3 00 + 2w - f1 103

Solar radiation pressure 42 w + 0 - X0 437

Solar radiation pressure -24 w - A^ 1562

w

A

Y

r

r

4	 f

Table 2
Principal Long-Period Terms in Zonal Harmonic and Luni-Solar

Perturbations in Eccentricity of Telstar 2.

•
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I

e

a

f^
R

A

4

4

Table 3
Principal Long- Period Terms in Zonal Harmonic and Luni-Solar

Perturbations in Eccentricity of Relay 1.

Source Amplitude Argument Period (days)

(J3 /J2) 520 x 10 -6 w 298

(J 4/J 2 ) -'/1 2w 149

(J 2) 18 2w 149

(J S /J 2 ) 7 w 298

(Js /J 2 ) 7 3w 99

Lunar gravity 304 2 (0, -w-  n) 2584

Lunar gravity 147 0C - 2w - 0 315

Lunar gravity -68 Zw 149.

Lunar gravity 19 2 (kc - w - 52 ) 14

Lunar gravity 9 2hc -Dc - 2w - 14

Lunar gravity -7 0C + 2w - 0 97

Solar gravity 149 2 (Q0 - w - 0) 2691

Solar gravity 109 2 (X. - w - 0) 171

Solar gravity 101 2&0 - f^0 - 2w - fl 436

Solar gravity 70 no - 2w - 0 314

Solar gravity -30 24 149

Solar gravity -30 2(X, - 00 - w) 795

Solar gravity 12 ^`o - wo - 3w - 0 2256

Solar radiation pressure

Solar radiation, pressure

31

-26

w + f) -,\o

a - ^0

342

1590

13
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The luni-solar gravitational and solar radiation pressure effects
were computed using the formulas in Reference 1. However, the pre-
caution was taken to exclude the near-resonant terms with arguments
2 	 - ^^) and 2 ( 82.,4 	from the initial computations. The por-
tion of the luni -solar gravitational disturbing function which includes the
two near- resonant terms is

FR . 64 a
2 e 2 (1 + cos i) 2 (n2 in s sin 2 i 0 cos 2(Q - a, - Q)

+ n 2̂ in sin 2 i^ cos 2(0	 Q)) .

The method of integration employed in Reference 1 cannot be directly
applied to the "moon" term in its present form inasmuch as the motions
of i,,, S) , and w + 0 are all commensurate; in addition, since i, and 0Q
have been referred to the Earth's equatorial plane, their motions are not
sufficiently constant over the time interval under study to allow accurate
computation of the perturbations.

However, using the ecliptic as a reference plane the "moon" term
can be rewritten in terms of angular variables having motions which are
essentially constant, and the integration can be carried out (details may
be found in Reference 5). Figure 9 illustrates the effect of removing the
luni-solar perturbations, including the "near-resonant" perturbation( e)R,
from the "mean" values of eccentricity.

There still remained a variation in the eccentricity having a period
approximately that of the argument of perigee. A harmonic analysis us-
ing the corrected values of the argument of perigee (u. ) was performed,
the results of which are shown in Figure 10. A further analysis indicated
that this variation could be accounted for by use of the value -2.504 x 10-6
for the J 3 zonal harmonic, instead of the value used in the orbit deter-
mination (see Introduction). This "adjusted" value for a 3 is much more
in line with recent determinations.
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Shadow Effects on Telstar 2

An indirect long period solar radiation pressi.re  effect on the orbit
of a satellite is caused by the passage of the satellite in and out of the
earth's shadow. This effect is best observed in the semi-major axis,
which undergoes no long period motion from any other source.

The Telstar 2 satellite provides a good subject for a study of this
effect. A long-period variation with approximate amplitude of 0.0000140
earth ra( li and a period of about a year was observed in the semi-major
axis. Analytic formulations derived using a procedure described in
Reference 6 successfully accounted for this variation, illustrated in
Figure 11.

Seasonal Variations in the Geopotential

A .seasonal variation in the second zonal harmonic in the geopoten-
tial has been observed (Reference 8). In his paper, Dr. Kozai sought but
did not find a variation in the third zonal harmonic. An analysis is under-
way to use the moderate to highly inclined orbits of the close nearly

1.9231980 r	 r	 r	 r	 r	 r	 I	 r	 r	 r	 r

1.9231940 THEORY INCLUDrNG ZONAL 	 •
• ••••••DATA BASED	 HARMONICS DIRECT RADIATION

a ON BROUWER	 PRESSURE, SOLAR AND LUNAR 	 •
<	 1 9231900 MEAN ELEMENTS	 GRAVITATIONAL FORCES,	 •
= AIR DRAG, AND INDIRECT	 •

1.9231860 --	 RADIATION PRESSURE	 y
q -___	 DUE TO SHADOWING

--
x1.9231820

•_ __--	 '-	 '--	 - _

0	 1.9231780
a THEORY INCLUDING ZONAL

HARMONICS DIRECT SOLAR
1.9231740 • RADIATION PRESSURE, SOLAR

U.J AND LUNAR GRAVITATIONALN
FORCES, AND AIR DRAG 	 ti

1 9231700
••	 I

•	 •

1.9231660 ^
100	 140	 180	 220	 260	 300	 340	 380	 420	 460	 500	 540	 580	 620

TIME (DAYS SINCE 08/18/63 11 HRS, 55 MIN 	 U.T.)
N.S.GSIS I.O.

MrY'aUd A 1$1.11 G to. ♦ ANA t.S.i DIY WA
.A.N6W	 .El	 _PAT I	 ) i it
At I.­n:•	 Yltlt N(	 }HIS

i

{

Figure 11. Semi-Major Axis of Telstar 2 vs. Time
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effects

F Solar radiation pressure force constant

F R Resonant disturbing function

i Inclination of satellite's orbital plane to Earth's equa-
torial plane

i C Inclination corrected for long-period lunar and solar
effects

J 2 9	 • • . ,	 i 's Zonal harmonic coefficients in Earth's gravitational
potential

Mean anomaly of satellite

Mean motion of mean anomaly

M Mass of satellite

n Mean motion of satellite

18

I	 I

i

x

(n

circular Tiros 8, Alouette 1, and Nimbus 2 satellites to study these ef-
fects. Orbits such as these undergo very substantial periodic perturba-
tions due to the third harmonic In eccentricity and argument of perigee
(see Reference 7). Any residual periodicities after all the lani-solar
gravitation, precession and nutation, radiation pressure, high degree
zonals, and solar and lunar tidal effects are removed may reveal the
effects of the time dependent geopotential.

Symbols

	

A	 Effective presentation area of satellite

	

a	Semi-major axis of satellite's orbit

	

a e	 Mean equatorial radius of the Earth

	

e	 Eccentricity of satellite's orbit

	

e G	 Eccentricity corrected for long-period lunar and solar
t



t	 +

f
'k

F	 ^ .

i

•	 1

r
i

	

R	 Disturbing function

	

t	 Time

Argument of perigee of satellite 's orbit

	

w	 Mean motion of argument of perigee

Longitude of ascanding'node of satellite 's orbit

Mean motion of longitude of ascending node

	

x ^,I ? G	 Mean longitude of sun or moon

The symbols e o, i¢ , etc. refer to the corresponding quantities for the
sun ( 0 ) or the moon (¢ ).
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